Glutaredoxin 2 prevents aggregation of mutant SOD1 in mitochondria and abolishes its toxicity.

نویسندگان

  • Alberto Ferri
  • Paolo Fiorenzo
  • Monica Nencini
  • Mauro Cozzolino
  • Maria Grazia Pesaresi
  • Cristiana Valle
  • Sara Sepe
  • Sandra Moreno
  • Maria Teresa Carrì
چکیده

Vulnerability of motoneurons in amyotrophic lateral sclerosis (ALS) arises from a combination of several mechanisms, including protein misfolding and aggregation, mitochondrial dysfunction and oxidative damage. Protein aggregates are found in motoneurons in models for ALS linked to a mutation in the gene coding for Cu,Zn superoxide dismutase (SOD1) and in ALS patients as well. Aggregation of mutant SOD1 in the cytoplasm and/or into mitochondria has been repeatedly proposed as a main culprit for the degeneration of motoneurons. It is, however, still debated whether SOD1 aggregates represent a cause, a correlate or a consequence of processes leading to cell death. We have exploited the ability of glutaredoxins (Grxs) to reduce mixed disulfides to protein thiols either in the cytoplasm and in the IMS (Grx1) or in the mitochondrial matrix (Grx2) as a tool for restoring a correct redox environment and preventing the aggregation of mutant SOD1. Here we show that the overexpression of Grx1 increases the solubility of mutant SOD1 in the cytosol but does not inhibit mitochondrial damage and apoptosis induced by mutant SOD1 in neuronal cells (SH-SY5Y) or in immortalized motoneurons (NSC-34). Conversely, the overexpression of Grx2 increases the solubility of mutant SOD1 in mitochondria, interferes with mitochondrial fragmentation by modifying the expression pattern of proteins involved in mitochondrial dynamics, preserves mitochondrial function and strongly protects neuronal cells from apoptosis. The toxicity of mutant SOD1, therefore, mostly arises from mitochondrial dysfunction and rescue of mitochondrial damage may represent a promising therapeutic strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different regulation of wild-type and mutant Cu,Zn superoxide dismutase localization in mammalian mitochondria.

The antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) is predominantly localized in the cytosol, but it is also found in mitochondria. Studies in yeast suggest that apoSOD1 is imported into mitochondria and trapped inside by folding and maturation, which is facilitated by its copper chaperone for SOD1 (CCS). Here, we show that in mammalian cells, SOD1 mitochondrial localization is dictated b...

متن کامل

ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2

In mutant superoxide dismutase (SOD1)-linked amyotrophic lateral sclerosis (ALS), accumulation of misfolded mutant SOD1 in spinal cord mitochondria is thought to cause mitochondrial dysfunction. Whether mutant SOD1 is toxic per se or whether it damages the mitochondria through interactions with other mitochondrial proteins is not known. We previously identified Bcl-2 as an interacting partner o...

متن کامل

Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation.

Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers,...

متن کامل

Destabilizing Protein Polymorphisms in the Genetic Background Direct Phenotypic Expression of Mutant SOD1 Toxicity

Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral scleros...

متن کامل

Mutant Cu/Zn-Superoxide Dismutase Induced Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis

Mutations in Cu/Zn superoxide dismutase (SOD1) gene are linked to the motor neuron death in familial amyotrophic lateral sclerosis (FALS). More than 100 missense mutations have been described to cause the disease and are distributed throughout the whole 153 amino acid sequence of SOD1 molecule (Valentine et al., 2005; Boillée et al., 2006). Mutant SOD1 molecules can be grouped according to thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 22  شماره 

صفحات  -

تاریخ انتشار 2010